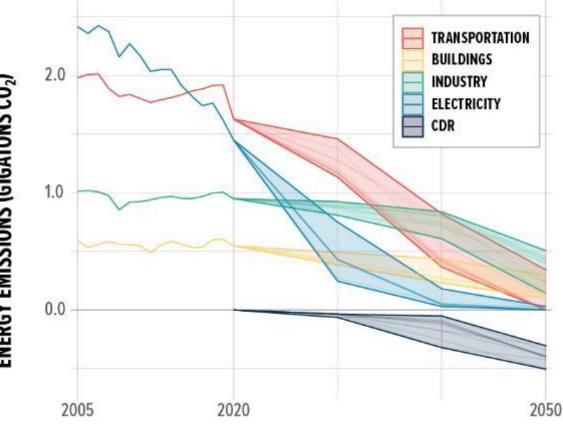

Land Use for Climate Action: Strategy, Funding, Impacts

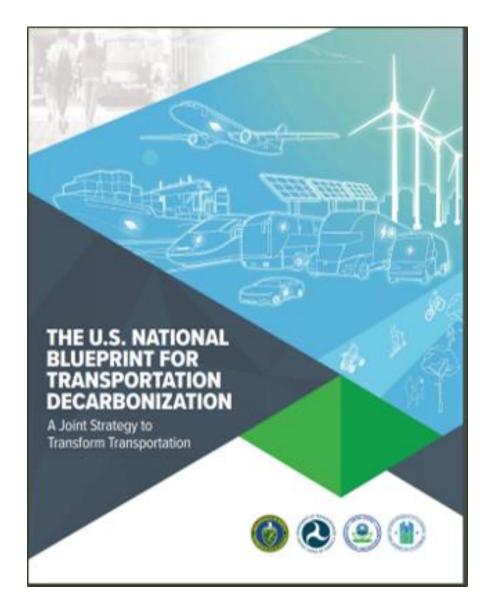
Emissions Trends and Goals

- Transportation is the largest source of U.S. greenhouse gas (GHG) emissions
- U.S. Economy-wide Goals:
 - 50-52% below 2005 levels by 2030
 - Net zero by 2050



U.S. making progress, but needs to accelerate to meet targets

- 2005 to 2021: U.S. GHG emissions fell 20%, led by reductions in the electric power sector
- U.S. transportation GHG emissions fell only 8% during that same time
- Transportation GHG emissions must fall dramatically to meet national targets


Historic U.S. CO2 by sector from 2005 to 2020 and target ranges for 2020 to 2050 according to the Long-Term Strategy of the United States, November 2021

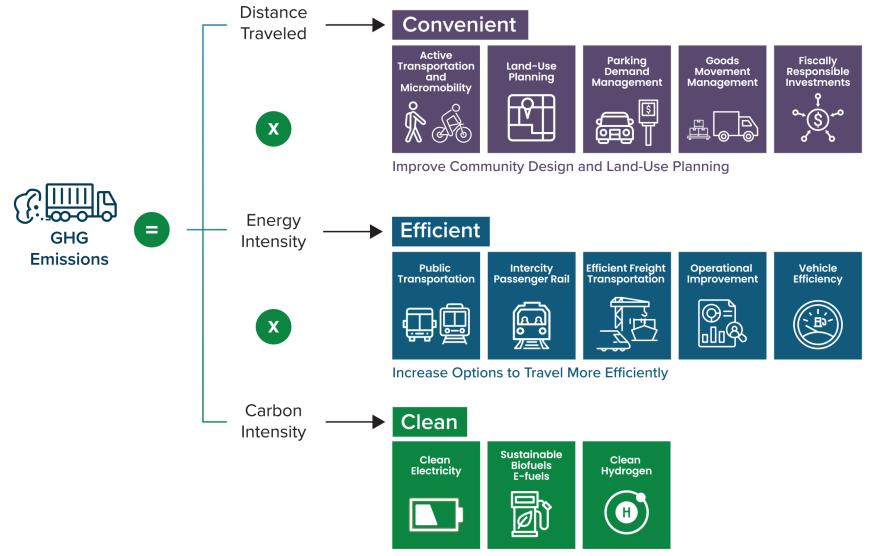
The Blueprint

US National Blueprint for Transportation Decarbonization

- Developed by DOT, DOE, EPA, HUD
- Released January 2023
- Strategy to reach Net-Zero transportation GHG by 2050

US DOT Report to Congress: Decarbonizing U.S. Transportation

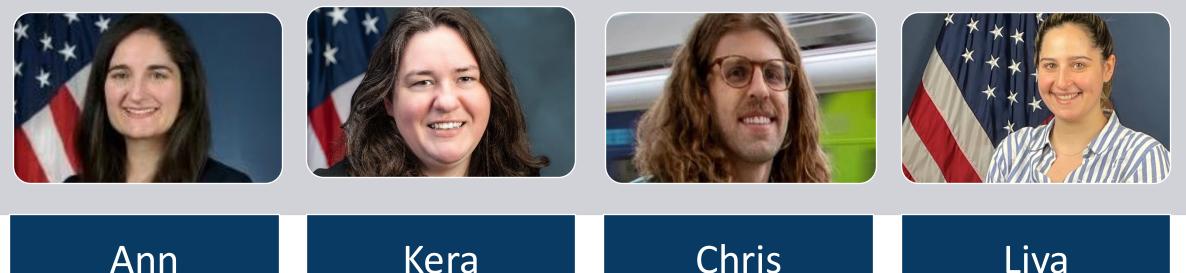
U.S. Department of Transportation


"The U.S. will not be able to decarbonize the transportation sector by midcentury <u>without addressing</u> <u>increased demand for</u> <u>vehicle travel</u>."

1600 **IGHT-DUTY VEHICLE GHG EMISSIONS** 1400 1200 ********** 1000 (MMT CO₂ EQUIVALENT) 800 600 400 200 80% REDUCTION FROM 2019 1990 2000 2010 2020 2030 2040 2050 HISTORICAL BASELINE HIGH EVMT (~80%) + NET-ZERO GRID WITH VMT GROWTH ***** HIGH EVMT (~80%) + NET-ZERO GRID WITH VMT REDUCTION LOW EVMT (~20%) + BASE GRID WITH VMTGROWTH LOW EVMT(~20%) + BASE GRID WITH VMTREDUCTION

Figure 7: GHG emissions scenarios depend on EV adoption as well as VMT change. (Source: Hoehne, C., Muratori, M., Jadun, P., Bush, B., Yip, A., Ledna, C., Vimmerstedt, L., Podkaminer, K. and Ma, O., 2023. Exploring decarbonization pathways for USA passenger and freight mobility. Nature Communications, 14(1), p.6913.)

PASSENGER VEHICLE GREENHOUSE GAS EMISSIONS SCENARIOS^A


Transportation Decarbonization Strategies

U.S. Department of Transportation

Our Panel

Ann Shikany

US Department of Transportation Deputy Assistant Secretary

Kera Package

US Department of Housing and Urban Development Deputy Assistant Secretary

Chris Hoehne

National Renewable Energy Labs Research Scientist

Liya Rechtman

US Department of Transportation

Multi-lab Research Project to Address Gaps

This project is filling a strategic gap by linking key state-of-the-art transportation modeling capabilities from three National Labs to facilitate assessment of decarbonization strategies at national & community scales.

RESEARCH MOTIVATION:

Transportation Decarbonization Blueprint

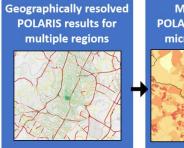
- Focus on convenient pillar motivated by Blueprint
- Improving mobility convenience (e.g., land-use planning) to achieve decarbonization will require ٠ capturing regional heterogeneity and informing national-level impacts
- Communities with limited resources need insights from state-of-the-art tools to improve energyefficient access, reduce emissions and costs, and achieve greater equitable mobility

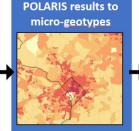
Economy-wide modeling insights from 37th Energy Modeling Forum (EMF-37)

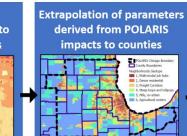
- US economy-wide modeling across dozens of teams/models from various institutions
- Insights from the Transport Study Group: state-of-the-art economy-wide models show no potential for land use or mode shift to support transport decarbonization (gap in capabilities)

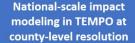
Literature review on convenient & Travel Demand Management (TDM) strategies

- At regional level, clear potential for mode shift, VMT reduction, etc.
- No current TDM research is national in scope and forward looking
- Recent national analysis with NREL's TEMPO model shows importance of TDM in decarbonization to ease ramp up of low-carbon electricity supply


Convenient				Efficient			
	E-Commerce	Travel Demand Management	Active Mobility	Pool Riding	Operational Improvement	Public Transportation	& Shipping
Improve Community Design and Land-use Planning in Scope					Increase Options to Travel More Efficiently		




6


National Level Impacts

Transportation Energy Use, Emissions, Grid Impacts, etc.

christopher.hoehne@nrel.gov

#++

Extrapolation from local- to national-scale

Exploring decarbonization pathways for USA